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Preface

I originally intended that the opening line of this book should read,
This book collects some utensils and implements needed for the compu-
tation of stable stems. A sensible reader should skip it, returning to the
material when necessary.

a reference to Chiral Algebras. However, as the scope of the book expanded it became
increasingly unclear where such an opening line should be placed. In its present form, the
purpose of this book is fourfold,

(1) to give a self-contained introduction to the newest available machinery for under-
standing the Adams spectral sequence (synthetic spectra),

(2) to provide readers with as large a collection of tools and utensils as is reasonable,
(3) to provide experts with a single unified reference text,
(4) to demonstrate the utility of design, interfaces and abstraction barriers in mathe-

matics (the synthetic viewpoint).
Although I have made an effort to make this book approachable for beginners, when balanced
against constraints of space and the nature of the subject material I imagine the average
reader to be a young researchers with a background in algebraic topology and a working
knowledge of the material in [HTT] and [HA].

In order to explain the utility of synthetic spectra to understanding the Adams spectral
sequence, let us consider three viewpoints on the Adams spectral sequence. In the first,
the Adams spectral sequence is nothing more than a pile of homological algebra with a
meaningful output. From this perspective a class on the E3-page has no particular meaning
and a typical argument about such a class might proceed by assuming this class to be
permanent, using the associated map of spectra to make a contradiction, then concluding
there must be a differential (and hopefully finding there is only one reasonable differential).
The second viewpoint on the Adams spectral sequence is the “resolution viewpoint”. Here
the Adams spectral sequence is seen as a pile of spectra resolving some fixed object of study.
From this perspective a class on the E3-page has a specific meaning and it really does
live somewhere. The argument by contradiction outlined above might now be replaced by a
direct computation of the differential (and the dependence on the parenthetical removed). In
trying to make this viewpoint systematic one is led to consider something like the E2 model
category of Dwyer–Kan–Stover [DKS93]. The fundamental weakness of this viewpoint is
the human aspect; the underlying “pile of spectra” is large, unwieldy and carrying it around
everywhere you go is mentally taxing.

Finally, we come to the “synthetic viewpoint”. After studying Adams resolutions closely
one finds a number of key formal properties these objects share and which can be used to
interact with them. In the synthetic viewpoint on the Adams spectral sequence we forget
the underlying “pile of spectra” from the resolution viewpoint, retaining the aforementioned
“formal properties” as our only means of interacting with the object which we now rechristen
a synthetic spectrum. At first it may seem that the synthetic viewpoint is less powerful than
the resolution viewpoint. After all, it certainly is more restrictive. However, in this case
less is more.

This brings us to a discussion of the fourth purpose of this book, that of design. In
Chapter 2 we will identify what we believe to be the key properties of the Adams spectral se-
quence and construct an interface for interacting with this spectral sequence based on those
properties alone. The strength of this interface lies in its simplicity. The constructions of
[Pst18] now become implementation details—a proof that a category with certain formal
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properties exists. Through the remainder of this book we demonstrate that every known
technique for computing Adams differentials becomes simpler synthetically and that many
arguments previously regarded as heuristic can be made precise and rigorous with surpris-
ingly little pain. Again we emphasize, everything that can be done synthetically could be
done using resolutions directly, the fundamental advancement is one of clarity.

This books consists of six chapters, with the core material being contained in chap-
ters 3-6. Chapter 1 is introductory and builds an interface for interacting with the titular
presentably symmetric monoidal categories. Chapter 2 provides an overview and introduc-
tion to synthetic spectra with many proofs deferred to next chapter. Essentially all the
of the material in this chapter also appears in [Pst18] and it is included for the purpose
of self-containedness. Chapter 3 is on constructions. This has two components external
constructions (i.e. constructing new categories analogous to synthetic spectra) and internal
constructions (i.e. constructing new objects of interest inside a fixed synthetic category).
Chapter 4 is on products, in it we study products and Toda brackets internal to a fixed syn-
thetic category. For the reader interested in the computation of stable stems this chapter
and chapter 6 will be of the greatest interest. In Chapter 5 we study power operations in
the synthetic context and recast several classical theorems in these terms. In Chapter 6 we
return to our roots and apply the material from the previous chapters to the study of the
Adams and Adams–Novikov spectral sequences.

Conventions

In order to maintain a more conversational style we establish several conventions which
will be in force throughout the text.

Categories. Throughout this work the word category will refer to an ∞-category in
the sense of Lurie, as set out in [HTT] and [HA] 1. Although in these works Lurie uses a
fixed model for ∞-categories, that of quasi-categories, our work will be model independent
in the sense that we will purposefully only use those operations and results which we believe
should be common to any “good theory of ∞-categories”.

Amplifying the previous paragraph, there is an abstraction barrier between the imple-
mentation of ∞-categories (a pile of combinatorics) and the theory of ∞-categories (an
abstract framework) and we will work exclusively with the latter. The benefits of this
arrangement are not so much mathematical as organizational, allowing us to write more
concisely.

Articles and equivalence. A key feature of working ∞-categorically is that it is
essentially impossible to distinguish between something which has been specified uniquely
and something which has been specified “up to contractible choice”. Dually, it is essentially
impossible to provide greater specificity in constructing an object than “up to contractible
choice”. This leads to two points which deserve some clarification, the first is linguistic, the
second is notational.

English has two articles a and the and the distinction between their use is often whether
an object has been uniquely specified. With the shift in our notion of “uniqueness” our use of
articles also shifts. In order to assist the reader we offer the following heuristics for resolving
the precise meaning of our language.

1This does not lead to issues because the (2, 1)-category of 1-categories is a full subcategory of the
∞-category of ∞-categories.
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• Typically one would extract from a noun phrase without a determiner “the col-
lection of objects which match the noun phrase”, instead one should extract “the2

space of objects which match the noun phrase”.
• The indefinite article a refers to having selected an (arbitrary) point in the space

provided by the associated noun phrase.
• The definite article the asserts that the space provided by the associated noun

phrase is contractible.

Example. Let us examine the two phrases “a sphere” and “the n-sphere”. The first is
relatively simple and might refer to any object equivalent to some fixed reference sphere.
The second is more sticky. Based on the use of the definite article it is clear that an object is
meant to be specified uniquely. Starting in dimension zero, the space S0 is uniquely specified
by the property that it is the unit for the smash product of spaces. The n-sphere can now
be uniquely specified as the n-fold suspension of the 0-sphere3. The difference between “a
sphere” and “the sphere” is the progenitor of all signs in algebraic topology.

Example. Although quasi-categories do not come equipped with a composition opera-
tion, suppose we have a pair of composable arrows f and g then by [HTT, Corollary 2.3.2.2]
the space of compositions of f and g is contractible. Thus, we may speak of the composition
of f and g.

An emergent phenomenon in the ∞-categorical world is that notion of equivalence,
which replaces equality, is substantially more subtle. For this reason we use four different
symbols for equivalence.

• We will use := when two objects are definitionally equivalent.
• We will use = when there is a unique equivalence between two objects, so that we

may unambiguously refer to “the equivalence” (the space of equivalences between
the pair of objects is contractible).

• We will use ∼= when an equivalence is given4.
• We will use ' when two objects are equivalent, but a choice of equivalence is not

specified.

Localization. At almost every point in this work we will have a fixed prime p in mind
at which we will have localized all objects.

Notation

Across the text we introduce several terms and abbreviations.
• A psmc (pl. psmc) is a presentable, symmetric monoidal category whose tensor

product commutes with colimits separately in each variable.
• sseq is an abbreviation for spectral sequence.

We will typically use ⊗ for the monoidal structure on a psmc. In particular, we will use
⊗ for the smash product of spectra. Similarly, in a stable category we will use ⊕ for finite
coproducts (and finite products).

2It’s turtles all the way down.
3The reader might complain that this is too involved for the phrase “the n-sphere” to be used without

explanation, the author agrees, hence the inclusion of this example.
4Often our use of ∼= in a theorem statement will depend on a construction only given the body of the

proof.



8 CONTENTS

S the category of spaces
Sp the category of spectra
S the sphere spectrum
MU complex cobordism
BP the Brown–Peterson spectrum
Z the integral Eilenberg–MacLane spectrum
Fp the mod p Eilenberg–MacLane spectrum
Map(−,−) mapping space in a category
[−,−] homotopy classes of maps π0 Map(−,−)
map(−,−) mapping spectrum in a stable category
SynE E-synthetic spectra [Pst18, Definition 4.1]
Sk,s a bigraded sphere (see ??)
Σk,s a bigraded suspension Sk,s⊗−
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CHAPTER 1

psmc

The primary characters in this work are stable presentably symmetric monoidal cate-
gories, their objects and the morphisms between those objects. In this chapter we set out
these players and the devices we will use to interact with them. This does not mean that
we will provide proofs (or even complete definitions). There is no replacement for a close
reading of [HTT], [HA] and [SAG] and what we provide here is an interface for our own
later use. For the expert this chapter may be superflous, for the novice it may be unreadably
brief, but we hope that for those between these extremes it offers a welcome “user’s guide”.

This chapter covers five main topics: finiteness conditions, algebraic constructions, pos-
itivity, measurement and graphical calculi.

1.1. Finiteness conditions

Definition 1.1.1. We introduce the following finiteness conditions which might be imposed
on an object X in a psmc C:

(1) X is compact if Map(X,−) commutes with filtered colimits.
(2) X is projective if Map(X,−) commutes with all colimits.
(3) X is dualizable if
(4) X is invertible if there exists a Y such that X ⊗ Y ' 1.

Note that if C is stable, then Map(X,−) commutes with finite colimits automatically,
so it will suffices

Definition 1.1.2. (1) presentable,
(2) compactly generated,
(3) rigidly generated,
(4) picard generated,
(5) monogenic,
(6) unit monogenic

Example 1.1.3. The category of spectra, Sp is unit monogenic.

Example 1.1.4. SpC2 is picard generated.

Example 1.1.5. SpCp is rigidly generated and if p 6= 2 it is not picard generated.

Definition 1.1.6. locally compact,

1.2. Algebraic constructions

1.2.1. Affineness.

1.2.2. Localizations.
1.2.2.1. Bousfield localization.

9
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1.2.2.2. Fracture squares.
Up to this point we have been happy to consider a single localizations at a time. How-

ever, in practice one often needs to understand the relation between several different local-
izations. Here we introduce the main technique for doing this: fracture sqaures. The history
of fracture squares is somewhat muddled, though it seems likely that they were known to
Bousfield possibly as early as the late 70’s. In our presentation we follow Bauer’s note on
the subject from [DFHH14, chapter 6].

Lemma 1.2.1. Given objects A and B in a stable psmc C there are associated Bousfield
localizations LA, LB and LA⊕B. If we suppose LB preserves A-equivalences1, then there is
a pullback square of symmetric monoidal functors

LA⊕B LA

LB LALB .

p

Proof. In order to prove this lemma we just need to show that the diagonal map in
the diagram below is an equivalence.

LA⊕B

P LA

LB LBLA.

p
ηB(LA)

LB(ηA)

It suffices to show the the natural map Id → P is an (A ⊕ B)-equivalence. The map
ηB(LA) is a B-equivalence, therefore P → LB is a B-equivalence. Now since Id → LB is a
B-equivalence we learn that Id→ P is a B-equivalence by 2-out-of-3.

The map LB(ηA) is an A-equivalence since ηA is an A-equivalence and LB preserves
A-equivalences by hypothesis. This implies that P → LA is an A-equivalence and using
2-out-of-3 again we may conclude that Id→ P is an A-equivalence as well. �

1.2.3. Short exact sequences.

1.3. Positivity conditions

The basic example of positivity (in the sense we use that word here) is an upper tri-
angular matrix. In this section we discuss categorical analogs of upper triangularity and a
number of situations in which this occurs automatically.

1.3.1. t-structures.

1.3.2. w-structures.

1Said another way, we’re asking that A⊗X = 0 implies A⊗ LBX = 0.
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1.4. Measurement

Up until this point most of our discussion has been relative. This is useful when the
goal is to show a pair of objects are equivalent, but less so when the goal is to “understand
the object X”. In this section we turn to the problem of measurement. In the category of
spectra there are several standard ways of a measuring an object so we begin by reviewing
this example.

1.5. A key example: filtered spectra





CHAPTER 2

Synthetic spectra

For moment we leave here only the following warning. More will appear in later versions.

Warning 2.0.1. We take the convention that the bigraded sphere Sk,s is Σ−sν Sk+s and
Σk,s− := Sk,s⊗−. This has the pleasant feature that the indices (k, s) correspond to
the (x, y) coordinates in an Adams chart. Unfortunately this breaks with the preceeding
literature.

13





CHAPTER 3

Constructions

In this section we will become acquainted with some the basic objects and constructions
in synthetic spectra. In the first section we will examine the constructions that can be made
using the map τ , paying particular attention to the various τ -Bocksteins. This material
will be used extensively throughout the rest of the paper. In the second section we give
an application of τ -Bocksteins, providing a synthetic reinterpretation of Toda’s obstruction
theory for Steenrod comodules. In the third and fourth sections we will study several natural
truncation and weight structures on the category of synthetic spectra. Although it will be
critical in several proofs [which?] reading this section is not strictly necessary to understand
later material.

3.1. New categories from old

3.2. Categorical patterns

3.3. τ-Bocksteins

Each synthetic spectrum is equipped with a cannonical endomorphism τ . As we dis-
cussed in ?? we think of τ as part of the data recording the Adams filtration.

Construction 3.3.1. For any n ≥ m we may construct a cofiber sequence

Σ0,−mCτn−m
Drn,n−m−−−−−−→ Cτn

rn,m−−−→ Cτm
δn,m−−−→ Σ1,−m−1Cτn−m

The identification of the leftmost map as Drn,n−m will appear in ??. We also have the
following commuting diagrams and compatibilities between these maps:

Σ0,−mCτm Σ0,n−kCτn Cτn

Σ0,−mCτn Cτn Cτk

Drn,m

τk−n

Drk,nrn,m

τm

rk,n

• ra,brb,c = ra,c.
The last two triangles are not special to τ , they’re just properties of taking the cofiber by a
self-map.

The notation estab-
lished here is cum-
bersome, I’m going to
change it before this is
public

Claim 3.3.2. π∗∗(Cτ) ∼= E∗∗2 (S) and δ∗∗ computes the Adams differentials.

Claim 3.3.3. The natural map
Cτ2n → Cτn

is a sqaure-zero extension.

Much latter this claim will inform several choices. This says that if you know everything
about the En+1 page, then all the differentials needed to jump to the E2n+1 page are linear
in an appropriate sense.

15
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Proposition 3.3.4. The map on bigraded homotopy groups induced by

δ2n,n : Cτn → Σ1,−n−1Cτn

is a derivation.

Proof. Since Cτn is base-changed from Cτn in the filtered setting it follows from (ref)
that if we think of (Cτn)⊗2 as a commutative Cτn-algebra via the left unit, then it is a
trivial square-zero extension of Cτn by Σ1,−n−1Cτn. We write ε for a choice of generator
of this square-zero ideal. From the pullback square

Cτ2n Cτn

Cτn (Cτn)⊗2

ηL

ηR

We can then read off that the map δ2n,n is the ε-component of ηR. Now in order to conclude
we can make the following calculation:

xy + εδ2n,n(xy) = ηR(xy) = ηR(x)ηR(y)

= (x+ εδ2n,n(x))(y + εδ2n,n(y))

= xy + ε(δ2n,n(x)y + (−1)|x|xδ2n,n(y))

�

Due to the usefulness of the Liebniz rule we take some time to explain how to use it
in some messier settings which tend to arise in nature. Suppose we are given x ∈ π∗∗Cτn
and y ∈ π∗∗Cτm with n ≥ m. The natural way to apply the Liebniz rule would be to first
project x down to Cτm using r and then consider δ applied to the product r(x)y. Carrying
out this computation using the above proposition we learn that

δ2m,m(rn,m(x)y) = δ2m,m(rn,m(x))y + (−1)|x|rn,m(x)δ2m,m(y)

= τn−mδn+m,n(x)y + (−1)|x|rn,m(x)δ2m,m(y)

Note that the output lives in Cτm which may not be particularly useful if n� m. A finer
result can be obtained if we instead use the dual of r to push y into Cτn and take the
product there,

δ2n,n(x(Drn,m)(y)) = δ2n,n(x)(Drn,m)(y) + (−1)|x|xδ2n,n(Drn,m)(y)

= δ2n,n(x)(Drn,m)(y) + (−1)|x|xδn+m,m(y)Include all the cases
where one of the num-
bers is infinity. 3.4. Toda’s obstruction theory

3.5. Positivity



CHAPTER 4

Products

In this chapter we explore the product structure on the bigraded synthetic homotopy
groups of the sphere and composition operations more generally. The use of composition
operations in homotopy theory is generally traced to Toda’s determination of the first 19
stable stems in [Tod62]. In retrospect, Toda’s ability to progress this far using such a
circumscribed toolkit speaks to the power of these techniques.

Much of this section is ultimately a validation of Mark Mahowald’s deep computational
insight into the behavior of Toda brackets and differentials in the Adams spectral sequence.
In their work on stable stems at the prime 2 [IWX20], Isaksen, Wang and Xu recognized the
utility of a theorem of Moss which, under favorable circumstances, described the behavior
of 3-folds in the Adams spectral sequence [Mos70]. The author thanks Zhouli Xu for
explaining these ideas to him and suggesting that various extensions ought to exist.

In the first section we study the product structure on the brigraded homotopy groups of
the sphere. The bulk of this section is devoted to extending the notion of a “hidden extension”
to this setting. This is another step in the verification of the meta-claim that all information
present in the Adams spectral sequence is contained in the synthetic homotopy groups. In
the second section we give an introduction to composition operations. This material is
mainly included for the sake of completeness. The notion of a Red-Blue brackets is new
and is designed to provide a managable extension of Matric brackets to the “mixed-length”
case. The author has found such brackets useful in practice and tools for manipulating them
under-developed. In the third section we discuss methods of evaluating brackets which are
specific to the synthetic category. These methods center on techniques for algebraically
extracting the value of a bracket after tensoring with the cofiber of τ . In the fourth section
we study the τ -bockstein and the consequences of its derivation structure. This material
will be used in [?] where its ability to stretch known Adams differentials to obtain unknown
ones is striking. In the final section of the chapter we carefully study the signs which arise
in our constructions. At the prime 2 this question collapses, while at odd primes it has been
a perennial thorn in our side.

This chapter is distinct from chapter 5 in that here we (mostly) explore the structure
inherent to the stable category of synthetic spectra, whereas in chapter 5 we study the
consequences of the symmetric monoidal structure.

4.1. The ring of homotopy groups

4.2. Brackets

Having discussed the product structure on synthetic homotopy groups the natural next
step is a discussion of Toda brackets (and their generalizations) in the category of synthetic
spectra. One of the most attractive features of Toda brackets in the synthetic category
is the way in which they naturally capture the Adams filtration of Toda brackets in the
ordinary category of spectra. Naively, one would expect that a Toda bracket 〈α, β, γ〉 has

17
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filtration l+m+ n− 1 where l,m, n are the filtrations of the three maps respectively, since
this is what happens with Massey products. We will find that two more terms must be
added to this sum which account for the Adams filtration of the nullhomotopy of αβ and
the nullhomotopy of βγ respectively.

We begin this section with a discussion of brackets in a general (monoidal) stable cat-
egory C. This is meant to provide background and seperate out the parts that come from
general theory. In the category of spectra we seperate out a certain class of 3-fold brackets
which experience has shown are particularly useful. Among these brackets are included
vn-multiplication operations from which most known infinite families of elements are con-
structed. Next we discuss manipulations of brackets such as shuffling and Jacobi identites,
again in a general category C. In our discussion of shuffling we introduce new notation which
allows us to keep track of auxillary information about nullhomotopies.

Specializing the preceding discussion to the case of synthetic spectra we recover theorems
of [who?] on the relation between Massey products and Toda brackets. A highlight of this
reformulation is a precise understanding of the notion of crossing differential which appears
as a technical condition in several previous theorems. As an application of the techniques
we develop we prove a Moss’ theorem for 4-folds which allows one to evaluate 4-folds formed
using Adams differential of mixed length. In the final subsection of this section we devote
particular attention to the Massey product M of [cite] and its connection to multiplication
by θ4.5.

4.2.1. An introduction to brackets.

Definition 4.2.1. First we treat the case of 3-fold brackets.

If we admit brackets of the third kind as our fundamental operation, then all orders of
bracket can be described in terms of two fundamental operations:

• Composition: given two composable maps f : X → Y and g : Y → Z we may
form the composite fg.
• Lifting: given two composable maps f and g and a nullhomotopy γ of the com-

posite we may form maps ĝ : cof(f)→ Z and f̂ : X → fib(g).

Definition 4.2.2. In a quasicategory foundation of∞-categories an n-fold Toda bracket in
a pointed cateogry C consists of a diagram of shape ∂∆n such that each 1-simplex [i, i+ k]
is sent to the zero map for n > k ≥ 2. The value of the bracket is extracted as follows: A
map F : ∂∆n → C is the same data as a map Sn−2 → Map(F (0), F (n)). Assuming C has
colimits this is the data as a map element of Map(Σn−2F (0), F (n)).

For example, a threefold 〈f, g, h〉 is recorded as follows: The 1-simplex [0, 1] is f , the
1-simplex [1, 2] is g and the 1-simplex [2, 3] is h. The 2-simplex [0, 1, 2] is the nullhomotopy
of fg, the 2-simplex [1, 2, 3] is the nullhomotopy of gh. The value of the bracket is the
associated circle in Map(0, 3).

FILTERED OBJECT VERSION

Definition 4.2.3. A Toda bracket

OBSTRUCTION TO BUILDING A PULLBACK
leave it as an exercise to equate all these.
depth
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4.2.2. Example: Red-Blue brackets. As an example we study a class of 3-folds in
Sp which we have dubbed red-blue brackets. These 3-folds have input and output spheres,
but are more general than the Matric brackets considered elsewhere. We have found that in
practice this collection of brackets is both simple enough to be analyzed in many cases and
also rich enough to include many of the important phenomenological aspects of the stable
stems.

Definition 4.2.4. Given a finite complex X with specified bottom and top cells we may
form the the bracket X(−) which is described as follows. Let Y denote the complex given
by removing the top and bottom cell of X and let f and g denote the attaching maps for
these cells respectively (we also have a specific nullhomotopy of fg as part of the data),
then X(−) is defined to be 〈f, g,−〉.

Remark 4.2.5. The name red-blue bracket comes from a picture of a cell structure for X
in which its bottom cell is colored blue and its top cell is colored red.

In practice we will also ask for the following further conditions: X is finite, has a single
bottom cell in degree 0, has a single top cell in degree n, and all other cells lie in degrees
[1, n− 1].

Example 4.2.6. The degenerate case where X is a two cell complex corresponds to mul-
tiplication by the attaching map. The simplest non-degenerate case (when X is a 3-cell
complex), corresponds to a standard 3-fold bracket.

Example 4.2.7. If the 3-cell complex constructed from a nullhomotopy of 2σ ◦8 is referred
to as P , then P (−) := 〈2σ, 8,−〉. This agrees with the somewhat standard use of P for
the Adams periodicity operator. If the 3-cell complex constructed from a nullhomotopy of
κ̄2 ◦ 8 = 0 is referred to as M , then M(−) := 〈κ̄2, 8,−〉. This agrees with the homotopical
version of the Massey product operator M [refs].1

Example 4.2.8. The spectrum Y := cof(2) ⊗ cof(η) provides a bracket Y (−) which is
defined whenever 2x = 0 and ηx = 0. In our discussion in [location] we will connect the
operation Y (−) to difficulties in completely calculating the F2-Adams spectral sequence
above a line of slope 1/5. Similar difficulties do not arise at odd primes.

Example 4.2.9. Consider the following complexes:

15

7 7

3 3 3

1 1 1 1

0 0 0 0

σ

ν ν

η η η

2 2 2 2

1These two examples are what suggested the notation X(−) to the author.
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which we refer to as Q0, Q1, Q2 and Q3 respectively.2 Since Qn (the homology operation)
detects the shortest length differentials in the AHSS converging to k(n)∗(−) we may think
of the brackets Qn(−) as inducing multiplication by vn.

As a follow up to this example we will codify what it means for the bracket based on a
complex X to induce multiplication by vn.

Definition 4.2.10. Let X be a red-blue complex which satisfies the extra requirements
of remark 4.2.5 such that in the Atiyah-Hirzebruch spectral sequence computing the k(n)-
homology of X there is a differential d(red) = vNn (blue). Then, we refer to X(−) as a
vNn -multiplication.

This definition is based on the fact that the attaching map for the red cell is an inclusion
on k(n)-homology which hits vNn times the generator corresponding to the blue cell.

It is well known that a finite complex only admits a vn-self map if its k(n−1)-homology
is zero. Further, every nonzero finite complex whose k(n − 1)-homology is zero has Fp-
homology of rank at least 2n. This provides a quantitative sense in which multiplication by
vn is “difficult to define on the sphere”. Based on this we prove the following lemma which
duplicates the above claim in terms of red-blue brackets.

Lemma 4.2.11. Any red-blue complex X whose bracket is a vNn multiplication in the sense
of definition 4.2.10 has at least n+ 1 cells.

Proof. Look at BP homology. �write proof

Example 4.2.12. The following are some commonly encounterd red-blue brackets. The
bottom row gives each complex a name.3

5 5 5

2j+1 4

14 3 3 3

6 12 6 2 2

2 4 2 1 1 1 1 1

0 0 0 0 0 0 0 0

FQ1 F 2Q1 FQ2 Θ̂j 2v2
1 v2

1
v21
2 Joker

ν ν

η

ν

η

θj

2

η

σ

η2

2

η

ν σ ν

η η

η ν η 2 8 4 2 2

2The reasons for the naming are variously, Q1 looks like a question mark and in homology the operation
Qi takes the bottom cell of Qi to its top cell.

3F stands for frobenius.
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4.2.3. Shuffling brackets.
Lemma 4.2.13. If fg = gh = hj = 0, then

〈f, g, h〉j ∩ f〈g, h, j〉 6= ∅.
Proposition 4.2.14. The following shuffling identities hold whenever all quantities are
defined

• Given gh ∼ε 0, hj ∼ε′ 0,

f〈g, h, j〉 = 〈fg, h, j〉
• Given fg ∼ε 0, gh ∼ε′ 0,

〈f, g, h〉j = 〈f, g, hj〉
• Given fgh ∼ε 0, hj ∼ε′ 0,

〈fg, h, j〉 = 〈f, gh, j〉
• Given fg ∼ε 0, ghj ∼ε′ 0,

〈f, g, hj〉 = 〈f, gh, j〉
• Given fg ∼ε 0, gh ∼ε′ 0, hj ∼ε′′ 0,

f〈g, h, j〉 = 〈f, g, h〉j
• hypothesis

〈〈a, b, c〉, d, e〉+ 〈a, 〈b, c, d〉, e〉+ 〈a, b, 〈c, d, e〉〉
Lemma 4.2.15. If fg = gh = hf = 0, then

〈f, g, h〉+ 〈g, h, f〉+ 〈h, f, g〉
Lemma 4.2.16.

〈(b, c)(d, e), f〉 = 〈b, c, 〈d, e, f〉〉
INTRODUCE CIRCUMFLEXES

Lemma 4.2.17.
4.2.4. Tensoring down. Given an element m ∈ π∗M one of the simplest ways to gain

information about m is to compute the value of m in π∗(M ⊗ R) for some ring R which
simplifies the situation. In our case of interest two natural choices of R emerge, R = S[τ−1]
and R = Cτ . Using these techniques we will be able to recover and extend results of [???] on
the convergence of Massey products in the E-based Adams E2-term to Toda brackets. In a
very real sense, the entire content of this subsection boils down to the following observation.
Observation 4.2.18. There is a diagram of stable psmc and symmetric monoidal left
adjoints,

SynE

Sp D(E∗E − comod)

−⊗Cτ

τ−1

The left arrow sends Toda brackets in the synthetic category to Toda brackets in the usual
stable homotopy category. The right arrow sends Toda brackets in the synthetic category
to Toda brackets in the category of E∗E-comodules (which are sometimes referred to as
Massey products).4

4There are subtleties regarding signs here and they are discussed at length in the section on signs.
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As a demonstration of this observation we will provide a proof of the following propo-
sition. We hope that this exercise will clarify the origin of the technical conditions in the
statement, and explain how direct examination of synthetic stable stems removes the need
for such hypotheses.

Proposition 4.2.19 ([Mos70]). Let a1 ∈ Es,t2 (X0, X1), a2 ∈ Es,t2 (X1, X2) and a3 ∈
Es,t2 (X2, X3) be permanent cycles such that a1a2 = 0 and a2a3 = 0. Let a1, a2, a3 be real-
ized by maps α1, α2, α3 respectively. Suppose also that each of the Adams spectral sequences
above converge and [no crossing differentials].

Then, the Massey product 〈a1, a2, a3〉 contains a permanent cycle which is realized by
an element of the Toda bracket 〈α1, α2, α3〉.

Our proof will consist of rewriting this as a synthetic statement and noting that is true
for simple reasons.

• The condition that ai is a permanent cycle realized by αi is equivalent to the
existence of a synthetic map

α̃i : Σ0,?νXi−1 → νXi

such it specialized to αi and ai under τ−1 and −⊗ Cτ respectively.
• The vanishing of the product αiαi+1 is equivalent to α̃iα̃i+1 being τ -power-torsion.
• No crossing differentials condition is equivalent to GROUP being τ -power-torsion

free.
Altogether, we obtain maps α̃i and learn that the 3-fold 〈α̃1, α̃2, α̃3〉 is defined. The

conclusion then follows from the Observation 4.2.18.
EXAMPLES
While one could take this as the go-ahead to prove various “convergence of Massey

products to Toda brackets” results in greater generality than previously known, we believe
that this misses the essential point. These comparison results are a pale reflection of our
ability to lift information from the algebraic category of Cτ -modules to the category of syn-
thetic spectra. The point is that serious study of the synthetic category is often easier than
the corresponding topological category because of the closer relationship with an algebraic
category.

MORE ADVANCED EXAMPLES
Before ending this subsection we give another example where tensoring down along a

ring map is useful. This example is supposed to standardize certain manipultations used in
the following situation: often one can show that a bracket is “nearly zero” in the sense that
its Adams filtration is very high, but the possibility remains that the bracket’s value is some
non-zero element of the K(1)-local homotopy of the sphere. We would like a simple reason
that a bracket contains an element which is zero in the K(1)-local sphere.

Example 4.2.20. Suppose that
• α, β, γ ∈ π∗ S are nonzero,
• 〈α, β, γ〉 is defined,
• γ = 0 in LK(1) S.

Then, 〈α, β, γ〉 contains an element in the kernel of the map to LK(1) S.

Proof. Let i denote the unit map of LK(1) S, then we have an equality

〈α, β, γ〉i = α〈β, γ, i〉.
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Let us examine the bracket on the right, it has indeterminacy (π? S)i+ β(π?LK(1) S). Since
γ is nonzero in π∗, but maps to zero in the K(1)-local sphere we know that |γ| ≥ 8. This
implies the map i is surjective on homotopy groups in the relevant degree so we can always
pick a nullhomotopy of βγ which makes the bracket zero.

�

4.2.5. Moss’ theorem on Massey products. Previously, we discussed how tensor-
ing down to Cτ can often quickly determine much of the information about a bracket. In
many situations this is sufficient, but in others we run into the problem that the indetermi-
nacy becomes too large after tensoring with Cτ , as indicated in the following example.

Example 4.2.21. Consider the bracket 〈σ2, 2, η〉. Classically, this bracket is well known
to have value η4 which is detected by h1h4 in the Adams spectral sequence. This bracket
takes values in π16,18 therefore we would expect it maps to h1h4. Furthermore, consultation
with the charts in [location] indicate that there is no indeterminacy. However, on tensoring
down to Cτ we obtain 〈h2

3, 0, h1〉 which isn’t useful.

In this section we will explore a technique which makes use of the fact that we started
with a spherically defined bracket in order to cut down the indeterminacy. This technique
is a synthetic refinement and extension of theorem [which] from Moss [cite]. For a precursor
to the material the reader is encouraged to consult [example ?]. We begin with a simple
lemma which lies at the heart of the matter. This seems to belong

in the tau bockstein
sectionLemma 4.2.22. Given a map α : S→ Cτ consider the Cτ -linear map

Cτ ⊗ α : Cτ → Cτ ⊗ Cτ
In [location] we fixed a choice of equivalence (of Cτ -module) between the target of this map
and Cτ ⊕ Σ1,−1Cτ . Under this equivalence

(Cτ ⊗ α) = (α, αδ1,1).

Proof. WLOG since Cτ -linear maps out of Cτ are the same as maps out of S it suffices
to precompose with ι ⊗ 1 and determine the map. In [location], we fixed two maps out of
Cτ⊗2 the first of these was the multiplication map while the second was projection onto the
top cell (tensored up to Cτ). The lemma follows from considering the following diagram.

S Cτ S

Cτ Cτ⊗2 Cτ

Cτ

α

ι⊗1

δ

ι⊗1 ι⊗1

Cτ⊗α Cτ⊗δ

µ

�

Before we can extend this lemma to the cases of interest we will need to fix a choice of
splitting as in [location] for more general situations.

Convention 4.2.23. Given a map f : X → Y we fix the following for the splitting of
Cτ ⊗ cof(τf). Using the fact that τf = fτ we construct the diagram indicated below:
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Cτ ⊗X Σ1,−1X

cof(τf)

Y Cτ ⊗ Y

δ⊗X

ι⊗Y

The maps along the downward-going diagonal are pictured in the following cell diagram:

X X

X Y

Y Y

τ

1

τf

f

f
τ

1

Upon tensoring up to Cτ and post-composing with µ on the bottom right and pre-
composing with the dual of µ on the top left we obtain the desired splittings.

Lemma 4.2.24. Given two maps f : X → Y and g : Y → Z and a nullhomotopy of τfg
we obtain maps f̂ : X → fib(τg) and ĝ : cof(τf) → Z by extension. After tensoring these
maps with Cτ and using the splitting of convention 4.2.23 we obtain equalities

(Cτ ⊗ f̂) = (f, h) and (Cτ ⊗ ĝ) =

(
h
g

)
For some map h such that hδ = fg.

• Modifying the nullhomotopy by k has the effect of modifying h by kι.
• If fg = 0 and the nullhomtopy of τfg is given by multiplying a nullhomotopy of
fg by τ then h = 0.

move to CtauN in this
lemma

Proof. We will prove only the first equality, the second being dual to the first. WLOG
since Cτ -linear maps out of Cτ⊗X are the same as maps out of X it suffices to precompose
with ι⊗ 1X and determine the map. In convention 4.2.23, we fixed two maps in and out of
Cτ ⊗ cof(τg). The map out to the copy of Cτ ⊗ Y is given by the map out to the top cell
followed by ι so we obtain the first part by the definition of extension. For the second part
consider the following composite and the cell diagram representing it below:

X
f̂−−−−−−−−→ cof(τg) −−−−−−−→ Cτ ⊗ Z δ−−−−−−−−→ Z

X Y

Z Z

Z Z

f

τg

g

τ

1

1

�

Proposition 4.2.25. Given maps f : X → Y , g : Y → Z, h : Z → W and nullhomotopies
of τfg and τgh we can define the bracket k := 〈f, g, h〉. Then, there exist Cτ -linear maps
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a : Cτ ⊗ X → Cτ ⊗ Z and b : Cτ ⊗ Y → Cτ ⊗ W such that ιaδ = fg, ιbδ = gh and
kι = fb+ ah.

Remark 4.2.26. In the situation where X,Y, Z,W are all bigraded shifts of objects in the
image of ν we may give a classical interpretation of the proposition. In this guise this is
[Moss’ thm]. Using the identification of the τ -bockstein spectral sequence with the decalage
of the νE-Adams spectral sequence we may identify a and b as element of the E2-term
such that dr(a) = fg and dr(b) = gh respectively. Note that the restriction on crossing
differentials present in Moss’ formulation of this result is a way to ensure that τfg = 0 iff it
is zero after inverting τ .

Proof. Unwinding [defintion] we are evaluating the the composite

X
f̂−−−−→ cof(τg)

ĥ−−−−→W

After tensoring with Cτ the middle term splits and by lemma 4.2.24 this becomes

Cτ ⊗X (f,a)−−−−−−−→ (Cτ ⊗ Y )⊕ (Cτ ⊗ Z)

b
h


−−−−−−−→ Cτ ⊗W

with composite given by fb+ ah. �

Example 4.2.27. We now examine the example from the start of this section 〈σ2, 2̃τ, η〉. As
before we can read off from [examples chapter chart] that this bracket is defined. For ease of
evaluation we can parenthesize the bracket: 〈σ2, τ(2̃, η)〉. Now applying proposition 4.2.25
we obtain that a = h4 and b = 0 so this bracket maps to h1h4 in Cτ as desired.

Example 4.2.28. Using the differential d3(h2
0h4) = h2Ph2 we obtain

h5
0h4 ∈ 〈{Ph2}, τ2(ν, 8̃)〉.

Let’s expand this bracket a bit 〈
{Ph2}, τ2(ν, η),

(
4̃
η

)〉
Let’s expand this bracket again,

S

S S cof(2) S

2̃

{Ph2}τ2

ν

η̂ η̂

Shuffling τ2 inward we can apply proposition 4.2.25 to obtain that this bracket is h3
0h4. finish this example

FIND EXAMPLE WITH TWO TERMS APPEARING
Next we turn to the analog of Moss’ theorem for 4-folds. At this point we make gen-

uine gains over previous formulations since it may not be possible to form such a 4-fold
meaninfully on any particular page of the Adams spectral sequence.

Proposition 4.2.29. Given the following data
• Let f1, f2, f3, f4 denote composable maps between synthetic spectra X0, X1, X2, X3, X4.
• Let ε1, ε2, ε3 denote nullhomotopies of τn1f1f2, τn2f2f3 and τn3f3f4 respectively.
• Let m = max(n1, n2 − n3), then we may form 3-folds

〈f1, τ
mf2, τ

n3f3〉 and 〈τmf2, τ
n3f3, f4〉

using the εi.
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• Let ρ1 and ρ2 denote nullhomotopies of τs1〈f1, τ
mf2, τ

n3f3〉 and τs2〈τmf2, τ
n3f3, f4〉

respectively.
• Finally, let s = max(s1, s2), p1 = m and p2 = n3 + s.

we can form the synthetic 4-fold bracket q := 〈f1, τ
p1f2, τ

p2f3, f4〉. As earlier, for each of
the nonzero ni we can form maps using the given nullhomotopies,

• a1 : X0 → Cτn1 ⊗X2, with a1δ = f1f2.
• a2 : X1 → Cτn2 ⊗X3, with a2δ = f2f3.
• a3 : X2 → Cτn3 ⊗X4, with a3δ = f3f4.

Furthermore, for each nonzero si we can form maps using the given nullhomotopies,
• b1 : X0 → Cτp1 ⊗X3, with b1δ = 〈f1, τ

mf2, τ
n3f3〉.

• b2 : X1 → Cτp2 ⊗X4, with b2δ = 〈τmf2, τ
n3f3, f4〉.

Finally, we have the following simplification of the bracket after smashing with Cτ :
• If p1, p2 6= 0, n2 < p1 + p2 and s 6= 0, then

q = τs−s2f1b2 + τs−s1b1f4.

• If p1, p2 6= 0, n2 < p1 + p2 and s = 0, then

q = τs−s2f1b2 + τs−s1b1f4.

• If p1, p2 6= 0 and n2 = p1 + p2, then

q = τmax(n1+n3,n2)+sa1a3 + 〈f1, a1, f4〉.

• If p1 = 0 and n2 < p1 + p2, then

q = 〈f1, f2, a3〉+ b1f4.

• If p1 = 0 and n2 ≥ p1 + p2, then

q =

〈
f1, (f2, a2),

(
a3

f4

)〉
.

• If p2 = 0 and n2 < p1 + p2, then
• If p2 = 0 and n2 ≥ p1 + p2, then
• If p1, p2 = 0, then no simplification is possible.

Proof. Our goal is to evaluate the bracket 〈f1, τ
p1f2, τ

p2f3, f4〉 after tensoring with
Cτ . We begin by noting that the choice of nullhomotopy of τp1f2τ

p2f3 gives us a specific
3-cell complex which we will call Y . The chosen nullhomotopy of 〈f1, τ

p1f2, τ
p2f3〉 provides

a map X0 → Y . The chosen nullhomotopy of 〈τp1f2, τ
p2f3, f4〉 provides a map Y → X4.

The value of the 4-fold we wish to evaluate is given by the composite of these maps. We
display a cell diagram illustration of this below.

X0 X1

X2

X3 X4

f1

τp1f2

τp2f3

f4
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Let q denote the value of the bracket. We break into six cases based on what happens when
we tensor Y with Cτ .

Case 1 p1, p2 6= 0 and n2 < p1 + p2.
In this case we obtain a cell diagram of the following form after tensoring with Cτ ,

X0 X1

X2

X3 X4

f1

a1

b1 b2

a3

f4

We can read off that q = f1b2 + a1a3 + b1f4.
Case 2 p1, p2 6= 0 and n2 ≥ p1 + p2.
In this case we obtain a cell diagram of the following form after tensoring with Cτ ,

X0 X1

X2

X3 X4

f1

a1

a2

a3

f4

We can read off that q = a1a3 + 〈f1, a1, f4〉.
Case 3 p1 = 0 and n2 < p2.
In this case we obtain a cell diagram of the following form after tensoring with Cτ ,

X0 X1

X2

X3 X4

f1

b1

f2

a3

f4

We can read off that q = 〈f1, f2, a3〉+ b1f4.
Case 4 p1 = 0 and n2 ≥ p2.
In this case we obtain a cell diagram of the following form after tensoring with Cτ ,

X0 X1

X2

X3 X4

f1

f2

a2

a3

f4

We can read off that q =

〈
f1, (f2, a2),

(
a3

f4

)〉
.



28 4. PRODUCTS

Case 5 p2 = 0 and n2 < p1. This case is the same as case 3 up to symmetry.
Case 6 p2 = 0 and n2 ≥ p1. This case is the same as case 4 up to symmetry. �

The statement of proposition 4.2.29 is significantly more difficult to follow than the
proof. For this reason we have decided not to continue exploring all variations on Moss’
theorem provable at this moment. Instead, we suggest that with the tools provided readers
may analyze brackets of arbitrary complexity directly.

EXAMPLES

Remark 4.2.30. Given a Toda bracket defined in the usual category of spectra (for con-
creteness we can assume this is a 3 or 4-fold bracket), one might try to produce another
bracket in the category of synthetic spectra which reduces to the given one upon inverting
τ . A measure of the quality of such a lift is given by how many times it is “divided by τ ” as
compared with the lift produced by the functor ν.

Upon picking a lift (which is viewed as optimal) we refer to the value of this bracket
after tensoring down to Cτ as the “primary value”. Note that this notion of primary value
often differs from simply picking classes on an E2-page representing the maps and evaluating
a Massey product.

From this viewpoint, the material in this subsection was about algebraically determining
the primary value of various brackets. In general, we have found when the prmary value of
a bracket is zero, determining the secondary value can be quite difficult. It seems likely that
if any secondary value can be computed in terms of a longer sequence of questions about
primary values, then there could exist an effective algorithm for determining the stable
homoopty groups of spheres. We leave this possibility as a question.

4.2.6. Example: the operator M. It is an insight of Dan isaksen to recognize the
importance of the operator M(−) in understanding the homotopy groups of spheres [is this
the right citation?]. The Massey product analog of M(−) is very often nonzero on the F2-
Adams E2 page and many of the longest known differentials hitM(−) applied to well-known
classes. One of the salient features of M(x) is that it is often equal to the product θ4.5x. In
this example we will explore an F2-synthetic analog of M and in certain situations relate it
to multiplication with θ4.5.

Definition 4.2.31. Let M(−) denote the F2-synthetic bracket based on the following com-
plex,

46, 51 1, 3 0, 0

κ̄2

8̃

Inverting τ recovers the definition of M(−) from [location]. Modding out by τ recovers the
definition of M as a Massey product. Based on this we hope no confusion will result from
our choice of notation.

In order to understand the relation between M(−) and θ4.5 we will produce a bracket
whose value is the F2-synthetic element θ4.5 ∈ π45,48.

Lemma 4.2.32. The following pair of F2-synthetic 3-fold are defined and both have the
property that their value maps to h3

4 in Cτ .
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0

0 0

0 0

0

τ38̃

4κ̄2

σ2

2

θ4

0

0 0

0 0

0

τ38̃

4κ̄2

θ4

2

σ3

Let α1 and α2 denote the values of the first and second brackets respectively. The indeter-
minacy of the first bracket is [indet]. The indeterminacy of the second bracket is [indet].
The two are related by α1 − α2 ∈ 〈θ4, 2, σ

2〉. Furthermore, they are related to the definiton
of θ4.5 from [cite] by [it’s the first one].

It is notable that this 3-fold bracket for θ4.5 uses the element τ3 in a spot where it
contributes to the indeterminacy. Classically, this bracket would have indeterminacy π45 ·1.
We find this a nice demonstration of the principle that synthetic indeterminacy is often
smaller than classical indeterminacy.

Proof. � write proof.

Lemma 4.2.33. Suppose α ∈ π∗∗ has the property that κ̄2α = 8̃α = 0,
• if σ2α = 0, then θ4.5α = τ3(DM)(α) + 2Θ3,4(α)
• if θ4α = 0, then θ4.5α = τ3(DM)(α) + 2Θ3,4(α)

Using the equation (DM)(−) +M(−) +Comm(8̃, κ̄2)(−) = 0 we can use this lemma to
relate M(−) and multiplication by θ4.5 up to the given error terms.

Proof. For the first bullet point shuffle the first bracket from lemma 4.2.32. For the
second bullet point shuffle the second bracket from lemma 4.2.32. �

With the set-up out of the way we can now go about relatingM to multiplication by θ4.5

in practice. We will spend the rest of this section examing the cases ofM(η),M(ν), {MP},M(κ)
and M(κ̄). Not all of these can be handles by lemma 4.2.33 directly

Example 4.2.34. Consider ν2, by consulting a chart one can conclude that 2̃ν2, νσ and
ν2κ̄2 are zero. Then, by lemma 4.2.33 we know that

τ3M(ν2) = τ3(DM)(ν2)− τ3Comm(8̃, κ̄2)(ν2) + 2Θ3,4(ν2)

Now we run through each of the terms in the above. finish this
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Using this piece of information we can use it to understand various other extensions.
Since νθ4.5 must now be nonzero

Example 4.2.35. Consider κ, Consider κ̄,

Example 4.2.36. Suppose that h3h5 lifted to a class α in Cτ4. Then, we would have
σα = θ4.5+?τ{h5d0}+?ηκ̄2. Multiplying this by ν we get

0 = νθ4.5+?τν{h5d0} = τ3M(ν)+?τν{h5d0} 6= 0.

The contradiction implies that δ4(h3h5) 6= 0. For sparsity reasons we may conclude that
δ4(h3h5) = h0x.

4.3. The Liebniz rule

One of the most useful techniques for evaluating Adams differentials is the Liebniz
rule. In the F2-Adams spectral sequence this alone reduces the number of d2’s one needs to
compute through dimension 50 from 344 to 66.5 In it’s most basic form, the Liebniz rule
says that if a is a permanent cycle then dr(ab) = adr(b). In this section we demonstrate that
using synthetic spectra much stronger forms of “linearity” of differentials can be proved.

4.3.1. The Liebniz rule for the sphere. We begin by exploring the Liebniz rule for
τ -bockstein differentials in the bigraded homotopy of the sphere. The theoretical aspects of
this subsection already appeared in [location] and particularly ?? where the explicit formula

δ2N,N (ab) = aδ2N,N (b) + δ2N,N (a)b

was proved for a, b ∈ π∗∗CτN . Here we devote ourselves to the more practical concern of
demonstrating the utility of this and similar formulas. We begin with the following which
we regard as a more creative use of the Liebniz rule.

Example 4.3.1. From [example in moss section] we know that the bracket 〈η, 2, σ2〉 is
defined and maps to h1h4 in Cτ . In [location] we will show that δ(h0h4) = 2κ. Using the
Liebniz rule we have the following equalities in Cτ2,

τη3κ = 2̃ν2κ = 2̃νδ2([h0h4]) + δ(2̃ν)[h0h4] = δ(2̃ν[h0h4])

= δ(η2[h1h4]) = η2δ([h1h4]) + δ(η2)[h1h4] = 0

For sparsity reasons we then learn that δ(h1e0) = η3κ. Applying the Liebniz rule one more
time we learn that δ(e0) = η2κ.There’s a subtle an-

noyance here...
So far when we use the Liebniz rule we’ve been in the convenient situation where our

pair of elements x and y both live in CτN . We next explain what can be done when x and
y live in different places.

Observation 4.3.2. Suppose we are given x ∈ π∗∗Cτn and y ∈ π∗∗Cτm with n ≥ m. The
natural way to apply the Liebniz rule would be to first project x down to Cτm using r
and then consider δ applied to the product r(x)y. Carrying out this computation using the
above proposition we learn that

δ2m,m(rn,m(x)y) = δ2m,m(rn,m(x))y + (−1)|x|rn,m(x)δ2m,m(y)

= τn−mδn+m,n(x)y + (−1)|x|rn,m(x)δ2m,m(y)

5These numbers refer to the dimension of the appropriate F2-vector space and we’ve excluded π0 in
order to get a finite answer.
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Note that the output lives in Cτm which may not be particularly useful if n� m. A finer
result can be obtained if we instead use the dual of r to push y into Cτn and take the
product there,

δ2n,n(x(Drn,m)(y)) = δ2n,n(x)(Drn,m)(y) + (−1)|x|xδ2n,n(Drn,m)(y)

= δ2n,n(x)(Drn,m)(y) + (−1)|x|xδn+m,m(y)

This observation doesn’t cover the case when one n = ∞, however that case is in fact
even simpler.

Observation 4.3.3. Since δ : Cτ → S is a map of synthetic spectra it is naturally linear for
the action of the synthetic sphere. From this we learn the following: Suppose that b ∈ π∗∗Cτ
and α ∈ π∗∗. Then, δ(αb) = αδ(b).

The power of the latter observation comes from the fact that no mention of “page”,
“length” or “CτN ” was necessary.

Example 4.3.4. Picking up where example 4.3.1 left off, we know that δ(e0) = η2κ. Now
in order to compute the d4 differential on e0g we can proceed as follows:

δ(ge0) = δ(κ̄e0) = κ̄δ(e0) = κ̄η2κ = τ2{Pd0}κ

where we’ve used that g is a permanent cycle detecting κ̄ [cite], and the relation τ2{Pd0} =
η2κ̄ [cite].

Example 4.3.5. Consider the differential on h2h5,

δ(h2h5) = δ(νh5) = νδ(h5) = ν2̃θ4.

In order to compute this differential it will now suffice to understand νθ4.
Consider the following Massey product for c2,

c2 = 〈h2
4, h2, h3〉

If νθ4 was zero, then we would be able to upgrade this Massey product to a syntethic Toda
bracket. On the other hand, from power operations we know that d2(c2) = h0f1 = h3p (this
appears as [exm] in [location]). This is enough to conclude that νθ4 is nonzero, but we can
actually go furhter. Since c2 does not lift to the Cτ2 we know that this Massey product
cannot be lifted to a synthetic toda bracket in Cτ2. Thus, we learn νθ4 6= 0 in Cτ2. From
this we may conclude that there exists a class p ∈ π33,37 which maps to the usual p in Cτ
and such that τp = νθ4. Putting everythng together we can now conclude that

δ(h2h5) = ν2̃θ4 = τ 2̃p

Example 4.3.6. Consider the differential on h3h5 which was calculated in example 4.2.36.
From it we obtain,

τ2[h0x] = δ4(h3h5) = δ(σh5) = σ2̃θ4.

which implies that τ2{x} = σθ4.

4.3.2. The Liebniz rule in general. Having studied the specific case of the sphere
we now turn to understanding the Liebniz rule in general. We will find that once things are
set up appropriately the sphere was in fact the universal example.

Although we have discussed the way in which the τ -bockstein
We will also need a slight enhancement of this lemma,



32 4. PRODUCTS

Lemma 4.3.7. Given CτN -linear map

α : CτN → CτN

there is an equivalence

(α⊗ CτN ) =

(
α αδ2N,N
0 α

)
Proof. The splitting of CτN ⊗CτN is induced by the pair of maps (m, δ2N,N ⊗CτN )

where m is the multiplication map.
One of the diagonal entries should be clear. The other follows by duality. The top left

entry essentially comes from our choice of splitting. The upper triangularity follows from
the CτN -linearity of α. �

Theorem 4.3.8. On the one hand

〈a, b, c〉 ⊗ CτN =

(
〈a, b, c〉 〈a, b, c〉δ2N,N

0 〈a, b, c〉

)
while on the other

〈a, b, c〉 ⊗ CτN =

〈(
a aδ2N,N
0 a

)
,

(
b bδ2N,N
0 b

)
,

(
c cδ2N,N
0 c

)〉
Proof. The functor

(−⊗ CτN ) : ModCτN → ModCτN

is exact and therefore sends Toda brackets to Toda brackets. Then, the theorem follows by
applying Lemma 4.3.7 �

Lemma 4.3.9. If R is an A2 ring, then

δ2N,N (m(x, y)) = m(x, δ2N,N (y)) +m(δ2N,N (x), y)

Proof. The map m(x, y) can be expanded as

CτN ⊗CτN CτN
1⊗y−−→ CτN ⊗CτN R

x⊗1−−−→ R⊗CτN R
m−→ R.

Upon applying [???] this expansion becomes the equality(
m(x, y) δ(m(x, y))

0 m(x, y)

)
=

(
1⊗ y δ(1⊗ y)

0 1⊗ y

)(
x⊗ 1 δ(x⊗ 1)

0 x⊗ 1

)(
m 0
0 m

)
�

4.3.3. Example: the K(1)-local sphere.
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CHAPTER 6

A closer look at S, Fp and BP

The origin of this book lies in the study of the Adams and Adams–Novikov spectral
sequences computing the homotopy groups of the sphere. In this chapter we return to these
roots more explicitly. We recast a substantial body of previous work in terms of the two
examples SynBP and SynFp

and examine these categories closesly from several perspectives.
In the first three sections we study the role played by “slopes” in the structure of these

categories. This begins with a general study of slopes in Section 6.1. Then, in Sections 6.3
and 6.4 we make a computational study of the first several slopes. We close with Sections
6.5 and 6.6 where we apply the techniques developed throughout this work to recompute the
stable homotopy groups of spheres through degree 50 via the Adams and Adams–Novikov
spectral sequence respectively.

A brief history.
Unlike the previous chapters, which may each be viewed as the development from first

principles of a single core idea, the sections of this chapter are more disparate and it is only
with sufficient historical context and some imagination on the part of the reader that they
can be woven into a convincing whole.

Following Adem’s work, the first non-existence result for maps of Hopf invariant one
was Toda’s proof that there does not exist an element of Hopf invariant one in π15. This
result was obtained as part of Toda’s computations of the homotopy groups of spheres (both
stable and unstable) [Tod55] [Tod62].

MORE HERE
For the purpose of this introduction we note that there are essentially six basic ap-

proaches to studying the homotopy groups of spheres and give an overview of each approach
to provide context for the somewhat disparate sections that follow.

Adams sseq Adams sseq Adams sseq
below topological degree n below filtration s above a line of slope m

Adams–Novikov sseq Adams–Novikov sseq Adams–Novikov sseq
below topological degree n below filtration s above a line of slope m

The first column is almost self-explanatory and involves a finite amount of algebra in
order to compute the E2-page (often undertaken with computer assistance) followed by the
topological task of computing differentials and hidden extensions. Tangora’s computation
of the E2-term through 70 via the May sseq remains essentially unsurpassed (by a human)
[Tan70]. Machine calculations have progressed significantly farther, for the state of the
art see [many cites]. The computation of differentials in the Adams spectral sequence was
undertaken by Mark Mahowald and others with great vigor throughout the late 20th century
[cites]. For the state of the art see [IWX20] which is essentially complete through the 80
stem. In Section 6.5 we will use the techniques developed in this book to recompute the

35
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differentials and hidden extensions through degree 50. Our reason for stopping at 50 is that
beyond this point the number of classes on the E2 page becomes substantial.

The process of studying the Adams–Novikov sseq one line at a time is essentially equiv-
alent to the chromatic approach to studying stable homotopy theory. This has its origin in
[Ada66a] where Adams studied the image of J through the d and e invariant. In [Rav86,
location], Ravenel identifies the d and e invariant as capturing the 0 and 1 line of the Adams–
Novikov sseq. The study of the 2-line in the sphere was carried out in [MRW77] while the
Japanese school constructed a variery of different spectra equipped with non-nilpotent self-
maps. Based on this evidence Ravenel put forward a bold collection of conjectures which
essentially assert that the theory of heights for formal groups plays a dominant role in the
large scale behavoir of the category of spectra. These conjectures were proved in short order
by Devinatz, Hopkins and Smith whose nilpotence, periodicity and chromatic convergence
theorems essentially verified Ravenel’s vision. Since this subject is so well-studied and due to
space limitations we will not presently investigate what leverage synthetic methods provide
in studying finite-height phenomena. We suggest the interested reader consult the green
and orange books for an introduction to this subject [Rav86] [Rav92].

Surprisingly little is known about the Adams spectral sequence in low filtrations and
what is known was hard-won. At the prime 2 Adams’ solution of the Hopf invariant one
problem [Ada60] can be rephrased as showing that the element hj on the E2 page sup-
port d2 differentials for j ≥ 4. Thus, the 1-line of the Adams sseq has only 4 nontrivial
elements 2, η, ν and σ 1. In [Mah77], Mahowald used Brown–Gitler spectra to construct
an infinite family of elements ηj which are detected by h1hj on the 2-line of the Adams
sseq. Mahowald’s construction of the ηj family provided a counterexample to the so-called
doomsday conjecture that every line of the Adams spectral sequence has only finitely many
elements. More recently Hill, Hopkins and Ravenel have shown that the elements h2

j sup-
ports non-trivial differentials for j ≥ 7 [HHR16] 2.

The algebraic task of computing the E2-page one line at a time has been taken up
by Lin and his students. For example, in [Lin08] and [Che11] they determine up to the
5-line at p = 2. Examining these output of these computations one finds that the structure
of the E2-page of the Adams sseq for the sphere is dominated (in low filtrations) by the
existence of the power operation Sq0, which corresponds to the Frobenius on the stack of
additive formal groups in characteristic p3 (for example, Sq0(hj) = hj+1). If we refer to
the collection of elements (Sq0)n(x) as the Sq0 family generated by x, then, we have the
following replacement for the original doomsday conjecture:

Conjecture 6.0.1 (Minami’s new doomsday conjecture). Only finitely many elements in
any Sq0 family detect non-trivial elements of the homotopy groups of spheres.

This conjecture is striking for several reasons. First, the author knows of no reason,
heuristic or otherwise, to believe that this conjecture should be true. Second, while much
research in the past several decades has centered on exploring the category of spectra by
progressing up the chromatic tower, this conjecture is anachromatic in the sense that it cuts
accross heights in a way that need not be controlled by any particular height.

1As discussed in [location] these are the only elements of the 2-local stable stems of depth infinity
and this implies that every other element of the stable stems is “decomposable in terms of Hopf invariant
one elements”. We again warn the reader that this notion of decomposable it not particularly workable in
practice.

2Note that no bound on the lengths of the differentials is provided.
3A more complete discussion of this operation appears in [location].
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SLOPES IN ADAMS SSEQ
SLOPES IN AN SSEQ

6.1. Slopes and vanishing lines

In this section we will explore a collection of distinguished ⊗-ideals in (compact) syn-
thetic spectra provided by “vanishing lines” in the bigraded homotopy groups. These ⊗-
ideals were first constructed in [HPS99] where a connection with (and interpretation of)
the ⊗-ideals in Sp is provided. These same ideas also lie at the heart of the Hopkins–
Smith construction of vn-periodicity maps. The basic definition is relatively simple and its
interpretation in terms of an E-Adams sseq is also clear.

Definition 6.1.1. We will say that a synthetic spectrum X admits a vanishing line of slope
m and intercept c if πk,s(X) = 0 for s > mk + c. We will say that a synthetic spectrum Y
has a finite-page vanishing line of slope µ, intercept c and torsion level r if every element of
πk,s(Y ) with s > µk + c is τ r-torsion.

In order to illustrate the definition we provide three examples and supporting charts.

Example 6.1.2. For any m the cofiber of τ admits a finite-page vanishing line of slope m,
intercept −∞ and torsion level 1.

CHART HERE

Example 6.1.3. The unit in SynBP admits a vanishing line of slope 1 and intercept 0.

CHART HERE

Example 6.1.4. In SynFp
, the cofiber of p̃ admits a vanishing line of slope q−1 and intercept

q−1 (for p = 2 the intercept is 3/2 instead).

CHART HERE
In these charts we see that typically a given object will admit many different vanishing

lines simultaneously. In order to capture this range of behaviors we make the following
collection of definitions.

Definition 6.1.5.
• Given an e ∈ [0,∞] we will let Synm=e

E denote the full subcategory of objects which
admit a vanishing line of slope e.
• Given an interval I ⊂ [0,∞] we will let Synm=I

E denote the full subcategory of
objects which admit a vanishing line of slope e for every e ∈ I.
• Given an ε ∈ [0,∞] we will let Synµ=ε

E denote the full subcategory of objects which
admit a finite-page vanishing line of slope ε.
• Given an interval I ∈ [0,∞] we will let Synµ=I

E denote the full subcategory of
objects which admit a finite-page vanishing line of slope ε for every ε ∈ I.

Remark 6.1.6. Note that an object is in Syn
m=[a,b]
E if and only it admits a vanishing line of

slope a and another vanishing line of slope b, i.e. only the endpoints of the interval matter.

Remark 6.1.7. In this section we will often restrict our attention to compact objects. Our
reason is that infinite sums of bigraded shifts of an object can create “artificial” vanishing
lines whose presence and study does not further our understanding of SynE .
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The first subsection focuses on the elementary properties of vanishing lines which hold
for most choices of E. The second subsection focuses on the specific cases of BP and Fp.
In this subsection the previous algebraic work of Palmieri and Krause provides much of the
necessary input [?] [?]. The third subsection introduces “slope localizations” and uses this
framework to sharpen several earlier results. The final subsection examines the the telescope
conjecture in this setting. In particular, we are able to show that the Fp-synthetic telescope
conjecture is true, though as it turns out this does not have a direct relationship with the
telescope conjecture in the category of spectra. We will examine what leverage this results
provides on the telescope conjecture more closely in forthcoming work [?].

6.1.1. Vanishing lines are generic.
In this section we explore the basic properties of vanishing lines. For us this means an-

alyzing how vanishing lines change under (co)limits and tensor products. As a consequence
of this analysis we conclude that (finite-page) vanishing lines depend only on relatively weak
information about a synthetic spectrum. In fact, it will turn out that vanishing lines on X
essentially only depend on Cτ ⊗X (i.e. they are algebraic) while finite-page vanishing lines
on X essentially only depend on X[τ−1] (i.e. they only see classical data). The interplay
between these two sides is what leads to much of the richness of this subject.

The material in this subsection was developed jointly with Senger and Hahn as a rein-
terpretation of the main results of [HPS99] in the synthetic language and first appeared in
[BHS19, Section 11] 4 5.

Note 6.1.8. In this version we will assume that E is either BP or Fp throughout this
section. In a future version these assumptions will be replaced with the appropriate weaker
conditions.

Much of this section will be spent laying the groundwork for the proofs of the following
three propositions. In order of appearance we discuss, how vanishing lines behave under
finite (co)limits, how vanishing lines behave under filterd (co)limits, sseqs and finally tensor
products.

Proposition 6.1.9. The full subcategory Synω,m=e
E of compact objects which admit a van-

ishing line of slope e and the full subcategory Synω,µ=ε
E of compact objects which admit a

finite-page vanishing line of slope ε are both thick ⊗-ideals in SynωE.

Proposition 6.1.10. X admits a vanishing line with parameters (m, c) if and only if X is
τ -complete and Cτ ⊗X admits the same vanishing line.

Proposition 6.1.11. There exists a function hE : R → N∪{∞} such that a compact
synthetic spectrum X admits a finite-page vanishing line of slope ε if and only if n ≥ hE(ε)
where n is the type of X[τ−1]. We will refer to hE as the height-slope function.

Although it might sound the most complicated, we can give the proof of Proposi-
tion 6.1.11 now (as long as we are willing to defer a key step step to ?? where we will
treat the tt-geometry of SynE more seriously).

Proof. By Proposition 6.1.9 the full subcategory Synω,µ=ε
E is a thick⊗-ideal of compact

synthetic spectra. As explained in Example 6.1.2 know that Cτ is an object of this category.

4As compared to [BHS19] the reader may note that the definitions have been simplified, the reader
will find justification for this in the lemmas below.

5Unlike in [BHS19] we will not study the interaction of the functor ν with vanishing lines which
streamlines the presentation substatially.
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Applying ?? which classifies thick subcategories containing Cτ based on the heights of
objects after inverting τ we can conclude. �

The function hE essentially determines how chromatic phenomena behave in SynE . In
the next section we will compute the functions hBP and hFp and comment on how this affects
the structure of these categories. Delve into what this

function tells us and
looks like in examples
in a more substantial
way.

6.1.1.1. Finite (co)limits.
In the stable setting finite (co)limits can be rewritten in terms of cofiber sequences. As

a consequence the following lemma suffices for most applications.

Lemma 6.1.12. Suppose we are given a cofiber sequence of synthetic spectra

A
f−→ B

g−→ C

such that A admits a finite-page vanishing line with (m, c1, r1) and C admits a finite-page
vanishing line with (m, c2, r2). Then, B admits a finite-page vanishing line with (m,max(c1+
r2, c2), r1 + r2).

Proof. Suppose that α ∈ πk,s(B) with s > mk+ max(c1 + r2, c2). Using the vanishing
line for C we learn τ r2g(α) = 0 and so we obtain a lift α′ such that f(α′) = τ r2α. Using
the vanishing line for A we learn that τ r1α′ = 0. Thus τ r1+r2α = 0 as desired. �

The case of sums is special since the torsion bounds don’t stack, so we record it sepa-
rately.

Lemma 6.1.13. If A and B admit finite-page vanishing lines with (m, c1, r1) and (m, c2, r2)
respectively, then A⊕B admits a finite-page vanishing line with (m,max(c1, c2),max(r1, r2)).

Proof. Clear. �

Although retracts and bigraded suspensions aren’t examples of finite colimits we record
how they affect vanishing lines here as well.

Lemma 6.1.14. Suppose that X has a finite-page vanishing line with (m, c, r), then

(1) any retract of X has a finite-page vanishing line with (m, c, r) and
(2) Σk,sX has a finite-page vanishing line with (m, c−mk + s, r).

Proof. Clear. �

With these lemmas in hand the proof of the following proposition is complete.

Proposition 6.1.15. The full subcategory Synµ=ε
E of synthetic spectra which admit a finite-

page vanishing line of slope ε is thick (closed under finite (co)limits and retracts) as well
as closed under bigraded suspensions. Similarly, the full subcategory Synm=e

E is thick and
closed under bigraded suspension.

Note that the statement of this proposition is slightly different from Proposition 6.1.9
as we did not restrict to compact objects and have yet to consider tensor products.
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6.1.1.2. Filtered (co)limits.
The behavoir of vanishing lines under filtered colimits is similarly easy to analyze.

Lemma 6.1.16. A filtered colimit of synthetic spectra which each admit a finite-page van-
ishing line with (m, c, r) admits a finite-page vanishing line with the same parameters.

Proof. π∗∗(−) commutes with filtered colimits. �

The condition that each object in the filtered colimit has the same vanishing line pa-
rameters may seem overly restrictive. The trick here is that when applying this one can
replace vanshing lines (m, ci, ri) at an object Xi with c = maxi(ci) and r = max(ri).

Warning 6.1.17. The preceeding lemma might lead the reader to think about finite-page
vanishing lines with r =∞ as the output of this lemma when the varying ri have no finite
maximum. We warn them that this notion is not closed under cofiber sequences.

The version of Lemma 6.1.16 for cofiltered limits is substantially more complicated
because of higher derived limits.

Lemma 6.1.18. An N-indexed limit of synthetic spectra which each admit a finite-page
vanishing line with (m, c, r) admits a finite-page vanishing line with (m, c+ 1 +m+ r, 2r).
If we assume that the lim←−

1 of the homotopy groups vanishes6, then this can be improved to
(m, c, r).

Proof. π∗∗(−) doesn’t quite commute with cofiltered limits, but we do have the Milnor
sequene,

0→ lim←−
1πk+1,s−1(Xα)→ πk,s

(
lim←−Xα

)
→ lim←−πk,s(Xα)→ 0.

Examining how these short exact sequences behave under multiplication by τ as in the proof
of Lemma 6.1.12 suffices to conclude. �

Since general colimits are built out of filtered colimits and finite colimits, the preceeding
lemmas essentially determine the behavior of vanishing lines under all shapes of colimit. Our
knowledge for limits is less complete, though practically speaking limits over uncountable
diagrams are rare.

6.1.1.3. Spectral sequences.
The prototypical spectral sequence is just a an N-inedexed diagram whose filtered colimit

we would like to recover from its associated graded. We show that vanishing lines behave
as expected in this setting7.

Lemma 6.1.19. Given a sequential colimit,

X0 → X1 → X2 → · · · → X∞

let Fi = Xi/Xi−1 and F0 = X0. If the Fi admit vanishing lines with (m, ci), then X∞
admits a vanishing line with (m,max{ci}).

Proof. After applying Lemma 6.1.12 n times we learn that Xn admits a vanishing line
with (m,max0≤i≤n(ci)). Using Lemma 6.1.16 to pass to X∞ we may conclude. �

Again lim←−
1 terms make the limit version more complicated.

6as is the case if the Mittag-Leffler condition is satisfied for example
7i.e. a vanishing line on the E1-page yields a vanishing line for the object of interest.
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Lemma 6.1.20. Given a sequential limit,

X∞ → · · · → X2 → X1 → X0

let Fi = fib(Xi → Xi−1) and F0 = X0. If the Fi admit vanishing lines with (m, ci), then
X∞ admits a vanishing line with (m,max(ci) + 1 + m). If the maximum value of the ci
occurs only finitely many times, then this can be improved to (m,max(ci)).

Proof. As above we can apply Lemma 6.1.12 to conclude that Xn admits a vanishing
line with (m,max0≤i≤n(ci)). Now we apply Lemma 6.1.18 in order to pass to X∞. In the
situation where the maximum value occurs only finitely many times the relevant lim←−

1 term
vanishes so we can just use the maximum of the ci. �

At this point we are prepared to prove Proposition 6.1.10 by analyzing the τ -bockstein
tower.

Proposition 6.1.21. X admits a vanishing line with (m, c) if and only if X is τ -complete
and Cτ ⊗X admits the same vanishing line.

Proof. The proof is composed of two observations:
(1) If X is not τ -complete, then there exists some k so that πk,s(X) 6= 0 for all s� 0

(i.e. X does not admit any vanishing lines).
(2) Upon applying lemma 6.1.20 to the τ -completion tower we only have to analyze

the associated graded, which is given by Σ0,−nCτ ⊗X for n ≥ 0.
�

Since we encounter Bockstein towers quite frequently in this chapter we abstract the
previous argument out so that we can reuse it.

Lemma 6.1.22. Suppose we are given a synthetic spectrum X, a self-map b : Σu,vX → X
and a compact localization L which fits into a fiber sequence F → Id→ L. such that

• FΣ−|b|cof(b) admits a vanishing line of slope m and intercept c,
• X[b−1] is L-local,
• m ≤ v

u .
Then, FX admits a vanishing line of slope m and intercept c+ 1 +m−1

Proof. We begin by showing that FΣ−n|b|cof(bn) admits a vanishing line of slope m
and intercept c for every n. We proceed by induction on n with base case n = 1 given.
Consider the cofiber sequence,

FΣ−|b|cof(b)→ FΣ−n|b|cof(bn)→ FΣ−(n−1)|b|cof(bn−1).

Then, using Lemma 6.1.12 and the inequality in the final bullet point we obtain the desired
vanishing line.

Using the fact that L commutes with colimits (and therefore F commutes with colimits
as well) we obtain an equivalence

F cof(b∞) ' lim−→FΣ−n|b|cof(bn).

Using Lemma 6.1.16 we now obtain a vanishing line of slope m and intercept c on F cof(b∞).
Using our assumption that X[b−1] is L-local obtain an equivalence

FX ' Σ−1F cof(b∞)

from which we may conclude. �
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6.1.1.4. Tensor products.
Unlike the other components of this section, there are general results about when a

tensor product of synthetic spectra admits a vanishing line which are non-trivial to prove
(and which depend on the fact that E is one of Fp or BP). At the moment though we will
stick with the theme of the section and only go after the low hanging fruit.

Definition 6.1.23. Recall that both SynBP and SynFp
admit a fiber functor to Vectgr

Fp
,

which in both cases is given by Cτ ⊗ ν(Fp) ⊗ −. This fiber functor is conservative on
compact objects (but not conservative in general). We will denote this fiber functor by
h(−) for brevity. Recall that the rank of h(X) records the minimum number of bigraded
spheres needed to buildX and that there exists a cell structure which achieves this minimum.
We will refer to the graded vector space h(X) as the homological location of X. Since h(X)
can be regarded as a synthetic spectrum we will allow ourselves to speak of vanishing lines
for it as well.

Lemma 6.1.24. Suppose that X admits a finite-page vanishing line with (m, c1, r) and Y is
compact. From compactness we know h(Y ) has rank finite rank and admits a vanishing line
with (m, c2) for some c2. Then, X ⊗ Y admits a finite-page vanishing line with parameters

(m, c1 + c2 + r · rank(h(Y )), r · rank(h(Y ))) .

Proof. Since Y is compact we can use ?? to conclude that it can be built using
cofiber sequences out of finitely many bigraded spheres indexed by h(Y ). Tensoring this
construction of Y with X we obtain a construction of X⊗Y out of pieces which each admit
finite page vanishing lines of slope m. Applying Lemma 6.1.14 and Lemma 6.1.12 each time
we add a new cell now allows us to conclude. �

Remark 6.1.25. Note that we needed to assume that Y was compact in this lemma since
the torsion level depended on the number of cells of Y . In the next section we will show
that in the case where E is one of BP or Fp and we assume X is compact as well, then a
much more detailed analysis allows us to obtain good control over this torsion level.

The r = 0 case of this lemma doesn’t depend on the compactness of Y as directly since
the there’s no decay in the intercept. We record the following corollary which highlights
how much better this situtation behaves for later use.

Corollary 6.1.26. Suppose that X admits a vanishing line with (m, c1) and that Y can
be written as a filtered colimit of compact objects Yi for which h(Yi) admit a vanishing line
with (m, c2). Then, X ⊗ Y admits a vanishing line with (m, c1 + c2).

Proof. We apply Lemma 6.1.24 to each Yi individually followed by Lemma 6.1.16 to
handle the filtered colimit. �

Without all the parameters Lemma 6.1.24 becomes:

Corollary 6.1.27. If X admits a (finite-page) vanishing line of slope m and Y is compact,
then X ⊗ Y admits a (finite-page) vanishing line of slope m as well.

In light of Proposition 6.1.15 this corollary finishes the proof of Proposition 6.1.9.

6.1.2. Slopes for BP and Fp.
We began this section by defining an ascending, R-indexed filtration of SynωE by slopes

· · · ⊆ Syn
ω,m=[a,∞]
E ⊆ Syn

ω,m=[b,∞]
E ⊆ · · · ⊆ Synω,m=∞

E = SynωE .
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In this subsection we determine the jumping locus of this filtration. This set is discrete and
each jump point, e, is characterized by the existence of a synthetic spectrum which admits
a vanishing line of slope e, but does not admit a vanishing line of any smaller slope. In each
case these vanishing lines arise for what is essentially the simplest possible reason: Whenever
a compact X has a vanishing line of slope exactly e there is a non-nilpotent self-map of X
which acts parallel to this vanishing line.

Notation 6.1.28. We letm(i, j) denote the slope of the May generator bi,j and v(n) denote
the slope of the nth chromatic periodicity. More specifically this means

v(n) := (2pn − 2)−1 and m(i, j) :=

{
(2i+j − 2j − 1)−1 if p = 2

(pi+j+1 − pj+1 − 1)−1 if p 6= 2
.

We will also use the compact notation Syn
m(i,j)
E as a replacement for the more cumbersome

Syn
m=m(i,j)
E (and similar with v(n)).

6.1.2.1. Algebraic periodicity.

6.1.2.2. Synthetic periodicity.

6.1.2.3. Slope-Moore objects.

6.1.3. Slope localizations.
In the previous section we explained how using slope-Moore objects we can calculate

the bigraded homotopy groups of synthetic spectra above a line as the output of a finite
number of Bockstein sseqs. For easy applications this approach can be useful, but because
the initial constructions lacked functoriality the whole thing is a house of cards. In this
section we pass to a more rigid and categorical perspective.

We would like to know in what sense the study of homotopy groups above a line can
be replaced by the study of a slope localization. This requires several developments. In this
section we will construct localizations associated to each (allowable) slope and investigate
their basic behavior. These localizations can be assembled into a tower and in the section
following this we will investigate the convergence properties of this tower.

6.1.3.1. Constructing slope localizations.
Each slope localization Lm(i,j sits in a cofiber sequence with its associated acyclicization

functor Fm(i,j)

Fm(i,j) → Id→ Lm(i,j).

6.1.3.2. Mono-slope localizations.

6.1.3.3. Examples of slope localizations. In this version the
reader can treat the
next couple examples
as the definitions of
these localizations.

Example 6.1.29. The localization Lv(0) is the compact localization with kernel generated
by S /p̃. This localization has a more concrete description as inverting p̃.

Example 6.1.30. The localization Lv(1) is the compact localization with kernel generated

by νV (1) (at odd primes). From the description of νV (1) as cof
(
S /p̃ ṽ1−→ S /p̃

)
we obtain

a description of Lv(1) S /p̃ as S /p̃[ṽ−1
1 ].
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Example 6.1.31. The localization L=v(1) is the Bousfield localization with respect to
S /p̃[ṽ−1

1 ].

Example 6.1.32. The localization Lm(1,0) is the compact localization with kernel generated
by νV (1)⊗ S /β1.

Lemma 6.1.33. (1) Lv(0) can also be described as Bousfield localization with respect
to S[p̃−1].

(2) Lv(1) can also be described as Bousfield localization with respect to S[p̃−1]⊕S /p̃[ṽ−1
1 ].

(3) Lm(1,0) can also be described as Bousfield localization with respect to S[p̃−1] ⊕
S /p̃[ṽ−1

1 ]⊕ S[β−1
1 ].

Proof. In order to prove the lemma we just need to compute the kernel of each Bous-
field localization and show that it is generated by the appropriate object. All three cases
are quite similar, so we only give details for (2).

Suppose that X ⊗ (S[p̃−1]⊕S /p̃[ṽ−1
1 ]) = 0. Using the vanishing from the first factor we

learn that for any map f : Y → X from a compact object Y the composite map

Σ0,NY
p̃N−−→ Y

f−→ X

is null. Consequently we can factor f as Y → Y ⊗ S /p̃N g−→ X. Using the vanishing from
the second factor we learn that for any map g : Y ⊗ S /p̃N → X from a compact object Y
the composite map

Σ0,MY ⊗ S /p̃N
ṽM1−−→ Y ⊗ S /p̃N g−→ X

is null. Consequently we can factor g as Y ⊗ S /p̃N → Y ⊗ S /(p̃N , ṽM1 )
h−→ X. Since

S /(p̃N , ṽM1 ) is in the thick ⊗-ideal generated by νV (1) this is enough to conclude that X is
in the localizing subcategory generated by νV (1). �

Using Lemma 6.1.33 and Lemma 1.2.1 we obtain fracture squares such as

Lm(1,0)(−) (−)[β−1
1 ]

Lv(1)(−) Lv(1)(−)[β−1
1 ]

which let us understand Lm(1,0) in terms of simpler localizations.

6.1.3.4. The slope tower.

6.1.3.5. Slope fracture squares.

6.1.4. Chromatic slope convergence.

6.1.5. Residue fields and an Fp-synthetic telescope conjecture.

6.2. tt-Geometry

6.3. Computations in localizations of the Adams spectral sequence

In the previous section we identified the slope localizations of the category of Fp-
synthetic spectra and described the general properties shared by these localization. Through
??, the study of the Adams sseq above a line of slope m is transformed into a discrete
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sequence of steps involving the computation of a full-plane localized sseq followed by a re-
assembly step (mediated by fracture squares ??). ?? indicates the converse is also true: if
one understands the Adams sseq above a line of slopem, then one implicitly also understands
both the slope localizations for m′ > m and the way in which these re-assemble.

In this section we carry out this process for some of the larger slopes. Although we
summarize the contents of each subsection below, this outline focuses only on the results
obtained rather than the techniques developed. The true purpose of this section, however,
is to showcase these computational techniques. For this reason we are less than systematic
in our study and proceed only as far as is necessary for the purpose of demonstration.

6.3.1. The p̃-local category.
The largest slope is m = ∞ and this corresponds to the p̃-local category. A complete

analysis of this category is relatively easy and we will use this as an opportunity to illustrate
the basic pattern later subsections will follow. The content of this section is essentially
equivalent to that of [Ada66b, Section 2].

Lemma 6.3.1. The map S→ ν Zp is a p̃-local equivalence.

Proof. Let Xi denote the ith stage in an integral skeleton for Zp (see ?? for the
discussion regarding integral skeletons). Since the map Xi → Xi+1 is injective on Fp-
homology we find that ν Zp has a filtration with associated graded ν(Xi/Xi−1). It will
suffice for us to show that for i > 0 this associated graded is p̃-locally trivial.

These quotients will be a sum of mod p Moore spaces in degrees where the Bockstein on
the Fp homology is exact (and since ν(S /p) ∼= S /p̃ this will be sufficient). The Fp-homology
of Zp is given by

AZ = Fp[ζ2
1 , ζ2, . . . ] ⊂ A at p = 2

AZ = Fp[ξ1, ξ2, . . . ]〈τ1, . . . 〉 ⊂ A otherwise

and we can read off from the coproduct that β acts as a derivation with β(ζi) = ζ2
i−1 and

β(τi) = ξi. In degrees 1 and larger this is exact, as desired. �

In [location] we calculated that

π0,∗ S ∼= π0,∗ν Zp ∼= Zp[p̃, τ ]/(p̃τ = p).

Since the homotopy of ν Zp vanishes in positive topological degrees we can now compute
the bigraded homotopy of the p̃-local sphere:

π∗∗ S[p̃−1] ∼= Zp[p̃±1]

with τ = p · p̃−1.

Proposition 6.3.2. There is an equivalence of stable psmc

SynFp
[p̃−1] ∼= Ab(p).

Under this equivalence Cτ is sent to Fp.

As a consequence of this proposition can conclude that any compact object in the p̃-local
category is a sum of (suspensions of) copies of 1 and 1/pk.

Proof. We will prove this proposition by showing that SynFp
[p̃−1] is affine over Sp

and then computing the spectrum of endomorphisms of the unit. For affineness, using ??
it suffices to note that SynFp

is generated as a stable category by {S0,s} and in the p̃-local
category we have equivalences p̃ : S0,s → S0,s−1.
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Since there is an essentially unique commutative algebra with the desired homotopy
groups we just need to use our computation that π0,0 S[p̃−1] ∼= Z(p) and that the higher
degree groups all vanish.

�

We now translate this information backwards into a description of the Adams sseq above
a line of slope q−1. From ?? we already knew that if X is compact, then the fiber of the
p̃-localization map, F∞X, admits a vanishing line of slope q−1. We sharpen this information
in two ways. First we calculate an explicit intercept for this vanishing line in the case of the
sphere.

Lemma 6.3.3 (Adams). The fiber of p̃-localization on the sphere Fv(0) S admits a vanishing
line of slope q−1 and intercept 3/2 (2q−1 for p odd).

Proof. Using Lemma 6.1.22 is will suffice to show that S /p̃ has a vanishing line of
slope q−1 and intercept 1 (intercept q−1 for p odd). Using Proposition 6.1.21 we reduce this
to an Ext computation.

At odd primes we have the change-of-rings isomorphism

ExtA(1/q0) ∼= ExtAZ(1).

The desired vanishing line is now present on the first page of the May sseq for AZ.
At p = 2 our argument is more elaborate. Let Y denote Cof(2̃) ⊗ Cof(η). Another

May sseq argument lets us conclude that Y has a vanishing line of slope 1/2 and intercept
0 . Since η3 = 2̃2ν, we learn that Cof(2̃) ⊕ Σ4,2Cof(2̃) has a three step filtration withAdd more details in a

later version. associated graded Y , Σ1,1Y , Σ2,2Y . Applying lemmas 6.1.14 and 6.1.12 we conclude that
Cof(2̃) admits a vanishing line of slope 1/2 and intercept 1. �

6.3.2. The ṽ1-local category at odd primes.
In this, mostly expository, section we study the second slope localization which cor-

responds to the ṽ1-local subcategory of SynFp
. Although this is only the second slope

localization it presents several new challenges not present in the p̃-local category.

6.3.2.1. The Moore spectrum.
Since the Moore spectrum S /p̃ is also a slope Moore spectrum the ṽ1-localization of this

object is computed by inverting a self-map. We begin by recasting Miller’s verification of
the height 1 telescope conjecture at odd primes as a computation of the homotopy groups
of S /p̃[ṽ1

−1].

Theorem 6.3.4 (Miller, [Mil81]). Above a line of slope m(1, 0) the Adams sseq for Cof(p)
collapses at E3 where it is isomorphic to Fp[q±1

1 ]〈h1,0〉.

In the synthetic language Miller’s result becomes the following:

Proposition 6.3.5. The homotopy groups of (S /p̃)[ṽ1
−1] are given by Fp[τ, ṽ1

±]〈α1〉 ⊕ T
where every element of T is simple τ -torsion.

We will recast Miller’s proof as an application of the νBP -based Adams sseq together
with a rather useful counting lemma.

6.3.2.2. The νBP-based Adams sseq.
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6.3.2.3. The ṽ1-local sphere.
In this section we will recast the computations from Michael Andrews’ thesis [And15]

as the computation of the homotopy groups of the ṽ1-local sphere. We will not reproduce
the computations ourselves, instead only providing the necessary material to link the two
perspectives. The key translation between these perspectives is that the sseq which Andrews
refers to as the MASS-∞ can be identified with the τ -Bockstein sseq for Fv(0)Lv(1) S (indexed
so that the homotopy groups of the cofiber of τ are the E2-page).

Notation 6.3.6. Let [n] denote the q-analog of n evaluated at p, i.e. [n] = pn−1
p−1 .

Theorem 6.3.7 ([And15]). The E3-page of the τ -Bockstein sseq for Fv(0)Lv(1) S has an
Fp-basis consisting of classes

• qv0 for v < 0 in degree (−1, 1) + |p̃|v,
• qv0q

kpn−1

1 for n ≥ 1, p 6 | k and −1 − [n − 1] ≤ v < 0 in degree (−1, 1) + |p̃| · v +
|ṽ1| · kpn−1,

• qv0q
kpn

1 εn for n ≥ 1, p|k and 1−pn ≤ v < 0 in degree (−2, 2− [n])+ |p̃| ·v+ |ṽ1| ·kpn.
The differentials are then determined by the following two pieces of information: the classes
qv0 are permanent cycles and qv0q

kpn

1 εn is hit by a differential of length |k|p + 2 off of a class
of the form q?

0q
?
1. This leaves an E∞-page with a basis consisting of the classes

• qv0 for v < 0,
• qv0q

kpn−1

1 for n ≥ 1, p 6 | k and −n ≤ v < 0,
• qv0εn for n ≥ 1 and 1− pn ≤ v < 0.

Remark 6.3.8. It is notable that the E3-page described in Theorem 6.3.7 is sufficiently
sparse that there is at most a single copy of Fp in each bidegree.

Remark 6.3.9. From the p̃-local computations from the previous section and the fact
that Lv(0)Lv(1) S ' Lv(0) S we can extract a description of the bigraded homotopy groups
πn,sLv(1) S for n > 0 from Theorem 6.3.7

Proposition 6.3.10. Suppose that x ∈ πn,sLv(1) S) and it maps to zero in the classical
L1-local sphere. Then,

(1) If n 6≡ −2 (mod 2p− 2), then τx = 0.
(2) x is τ c-torsion where c = max {1, |n+ 2|p}.
(3) If n ≥ 0 and s ≤ p−2

2(p−1)2 (n+ 2) + 2, then τx = 0.

Proof. (1) follows from the sparsity of the E3-page in Theorem 6.3.7. (2) follows
from the description of the lengths of the differentials in Theorem 6.3.7. (3) is similar, but
more combinatorially involved. We can read off from the E3-page in Theorem 6.3.7 that
in topological degree jpr(2p − 2) − 2 where p - j the τ2-torsion class of minimal Adams
filtration is

q1−pr−1

0 qjp
r

1 εr−1 in degree (jpr(2p− 2)− 2, jpr + 3− [r])

Noting that the line specificed in (3) passes below these classes we obtain the desired result.
�

6.3.3. The ṽ1-local category at p = 2.
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6.3.4. The slope m(1, 0)-localization at odd primes.
In this section we study the slope m(1, 0)-localization at odd primes. The associated

self-map which runs paralell to this slope is β1 and the fact that this class was defined in
the sphere is a key feature that makes studying this localization an approachable problem.

In the first subsection we will study the β1-inverted category. In the second we combine
our understanding of the β1 inverted category with our understanding of the ṽ-local category
to study the slope m(1, 0)-local category. In the third subsection we analyze the range in
π∗∗ S agrees with the bigraded homotopy groups of Lm(1,0) S.

6.3.4.1. The β1-inverted category.
In this version we will only go after the most basic piece of information about the

β1-inverted category.

Notation 6.3.11. Let A3 = 5 and Ap = 2(p− 1)2 for p ≥ 5.

Lemma 6.3.12. The bigraded homotopy groups of S[β−1
1 ] are τAp-torsion.

Proof. It will suffice to show that τApβN1 = 0 for some N � 0. Using the fact that
the comparison functor SynBP → SynFp

sends β1 to β1 (the implicit claim here is that β1

has equal Adams and Adams-Novikov filtrations of 2) it will suffice to prove this relation in
SynBP. In this form this claim was prove in [BHS19, Proof of Theorem 12.2], though this
itself was an easy consequence of the bound on the length of the Adams-Novikov differential
killing βp

2−p+1
1 as discussed in Ravenel’s Green book shortly after the statement of Theorem

7.6.1. The proof that βp
2−p+1

1 = 0 is due to Toda.
At the prime 3 we will make an improvement on the argument above. From the 3-

primary Adams spectral sequence calculations of Oka [Oka71, Oka72] we can read off that
π60,12 S ∼= Fp{β6

1}. Since b61 is hit by a d6 differential in the F3-Adams spectral sequence
some (and therefore every) element of π60,12 S is τ5-torsion. �

6.3.4.2. The m(1, 0)-localization.
In order to study the m(1, 0)-local category we will use a fracture square to combine our

previous knowledge about the v(1)-local category with what we know about the β1-inverted
category.

Lemma 6.3.13. The bigraded homotopy groups of Lv(1) S[β−1
1 ] are all simple τ -torsion.

Proof. Consider the composition

S→ Lv(1) S→ Lv(1) S[β−1
1 ],

we will show that the image of β1 in Lv(1) S is simple τ -torsion. First we note that Lv(1) S
only has τ -torsion-free elements in topological degrees congruent to −1 and 0 mod 2p − 2.
In particular, we learn that the image of β1 is τ∞-torsion. By proposition 6.3.10(2) we may
now conclude that β1 ∈ π10,2(Lv(1) S) is simple τ -torsion. �

Definition 6.3.14. Let B(n, s) denote the τ -torsion-order of πn,sLv(1) S.

Proposition 6.3.15. The τ -torsion-order of πn,sLm(1,0) S is at most 1 + max(Ap, B(n, s)).

Proof. Consider the fracture square expressing the Lm(1,0)-localization in terms of the
Lv(1)-localization and inverting β1
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Lm(1,0) S Lv(1) S

S[β−1
1 ] Lv(1) S[β−1

1 ].

Given a τ∞-torsion element x ∈ πn,sLm(1,0) S which maps to y ∈ πn,sLv(1) S and z ∈
πn,s S[β−1

1 ] we argue as follows: From Lemma 6.3.12 we know that τApz = 0. By definition
we know that τB(n,s)y = 0. Therefore, τmax(Ap,B(n,s))x lifts to some element w in the homo-
topy of Σ−1Lv(1) S[β−1

1 ]. Since τw = 0 by Lemma 6.3.13 we learn that τ1+max(Ap,B(n,s))x = 0
as desired. �

6.3.4.3. The region of convergence.
In this subsection we analyze the size of the region in which the bigraded homotopy

groups of the sphere agree with those of the m(1, 0)-local sphere. With more complete
knowledge of them(1, 0)-local sphere this would allows us to understand the Adams spectral
sequence for the sphere above a line of slope v(2).

Proposition 6.3.16. The synthetic spectrum Fm(1,0) S has a vanishing line of slope v(2)
and intercept 1 + 4v(2).

In order to prove proposition 6.3.16 we begin with the following lemma which will allow
us to reduce the proof to analyzing νV (1)⊗ S /β1.

Lemma 6.3.17. Suppose that νV (1)⊗S /β1 has a vanishing line of slope v(2) and intercept
c.

(1) Σ−|p̃|−|ṽ1|−|β̃1|Fm(1,0)(νV (1)⊗S /β1) has a vanishing line of slope v(2) and intercept
c− 3− 2v(2).

(2) Σ−|p̃|−|ṽ1|Fm(1,0)νV (1) has a vanishing line of slope v(2) and intercept c−2−v(2).
(3) Σ−|p̃|Fm(1,0) S /p̃ has a vanishing line of slope v(2) and intercept c− 1.
(4) Fm(1,0) S has a vanishing line of slope v(2) and intercept c+ v(2).

Proof. First, we note that

Lm(1,0) (νV (1)⊗ S /β1) ' 0.

Therefore we can read (1) off by tranlating the given vanishing line appropriately,

c+ (−1) + (−1 + (2p− 2)v(2)) + (−2 + (2p2 − 2p− 2)v(2)) = c− 3− 2v(2).

Second, we apply lemma 6.1.22 with X = Σ−|p̃|−|ṽ1|νv(1), b = β1 and L = Lm(1,0). In
this case νV (1)[β−1

1 ] is Lm(1,0)-local since it is β1-local. Third, we apply lemma 6.1.22 with
X = Σ−|p̃| S /p̃ and b = ṽ1. In this case (S /p̃)[ṽ−1

1 ] is Lm(1,0)-local since it is Lv(1)-local.
Finally, we apply lemma 6.1.22 with X = S and b = p̃. In this case S[p̃−1] is Lm(1,0)-local
since it is p̃-local.

�

Lemma 6.3.18. The synthetic spectrum νV (1)⊗S /β1 admits a vanishing line of slope v(2)
and intercept 1 + 3v(2).

Proof. As above, we note that νV (1) ⊗ S /β1 is Lm(1,0)-acyclic. Therefore, by the
results of [location] it admits a vanishing line of slope v(2). The main content of this lemma
lies in finding a good intercept for this vanishing line.
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We will begin by analyzing the spectrum T (0)(1) from [Rav86, Example 7.1.17] and its
relation to S /β1. Taking m = 0 and h = p − 1 in [Rav86, 7.1.11] we learn that there is a
sequence of inclusions of BP∗BP-comodules

BP∗(T (0)(1)) ∼= BP∗{1, t1, . . . , tp−1
1 } ⊂ BP∗[t1] ⊂ BP∗[t1, t2, . . . ] ∼= BP∗BP.

From this we learn that there is a sequence of inclusions of A-comodules

(H Fp)∗T (0)(1)
∼= Fp{1, ξ1, . . . , ξp−1

1 } ⊂ Fp[ξ1] ⊂ A.

In section 9.3 of [Rav92] T (0)(1) is called G1 instead and Ravenel shows that S0 is in the
thick subcategory generated by G1. We will break with both of these conventions and refer
to this spectrum as Xp.

Our next step is finding an explicit intercept for a vanishing line for νV (1)⊗ νXp of the
desired slope. By Proposition 6.1.10 it will suffice to prove that

Exts,tA (Fp,Fp[ξ1, . . . , ξp−1
1 ]⊗ E(τ0, τ1))

satisfies the same vanishing criterion. The May E1-term for this Ext group is given by
modding out by b1,0, h1,0, v0 and v1 on the May E1-term for the sphere. Thus, we can read
off that νV (1)⊗ νXp has a vanishing line of slope v(2) and intercept v(2)2p.

Now we must pass back to S /β1 from Xp. Classically there are cofiber sequences

S0 → Xp
j−→ ΣqXp−1 and Xp−1

i−→ Xp → Sq(p−1)

where the maps S0 → Xp and Xp → Sq(p−1) are the inclusion of the bottom cell and the
pinch onto the top cell respectively such that fib(ij) ' S /β1 (see Section 9.3 of [Rav92]).
Since both of these cofiber sequences are short exact on homology, they remain cofiber
sequences after applying ν. We expand the equation ν(ij) = ν(j) ◦ ν(i) into the a diagram
where each row and column is a cofiber sequence in the way shown below,

0 νXp νXp 0

Sqp−1,qp Σq,qνXp−1 Σq,qνXp Sqp,qp

Sqp−1,qp S1,0 cof(ν(ij)) Sqp,qp

ν(j) ν(ij)

ν(i)

and this diagram lets us identify this synthetic construction as producing S /β1 as well since
the construction we have make is compatible with inverting τ and πqp−2,qp(S0,0) ∼= Fp{β̃1}.

Rotating the third vertical cofiber sequence above we obtain a cofiber sequence

Σ2p−3,2p−2νXp → S /β1 → νXp.

Tensoring this cofiber sequence with νV (1) and using the vanishing line established above
for νV (1) ⊗ νXp allows us to conclude that S /β1 has a vanishing line of slope v(2) and
intercept v(2)2p+ (1− (2p− 3)v(2)). �

Proof (of Proposition 6.3.16). Plugging lemma 6.3.18 into lemma 6.3.17 we obtian
the desired vanishing line. �

Definition 6.3.19. Let Γp(n) denote the minimal s such that every α ∈ πn,s+1 S is either
τ -torsion or detected K(1)-locally after inverting τ .
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Proposition 6.3.20. For p 6= 2, there is a line of slope v(2) in the Adams spectral sequence
such that every class above it is in the Image of J . More precisely,

Γ3(n) ≤ 1

16
n+ 7 +

1

4

Γp(n) ≤ v(2)n+ 2p2 − 4p+ 4 + 4v(2) for p ≥ 5.

Proof. Consider the cofiber sequence associated to the Lm(1,0)-localization of the
sphere

Fm(1,0) S→ S→ Lm(1,0) S .
Suppose we are given an element x ∈ πn,s S whose image in the classical K(1)-local sphere
is zero. Then, since Lm(1,0) S[τ−1] ' L1 S we may conclude that it maps to τ∞-torsion in
Lm(1,0) S. Note that since x started in the sphere we may assume that n ≥ 0. To prove the
proposition we will use Proposition 6.3.15 to bound the τ -torsion order of x in the m(1, 0)-
localization and Proposition 6.3.16 to argue that this is enough to force x to be τ∞-torsion
in the sphere.

We would like apply Proposition 6.3.15 to conclude that the image of τ1+Apx in Lm(1,0) S
is zero. For n < (2p − 2)pAp+1 − 2 we have that B(n, s) ≤ Ap by Proposition 6.3.10(2) so
we may conclude. When n ≥ (2p − 2)pAp+1 − 2 we replace x by τNx for the minimal N
such that |τNx| is on or below the line

s ≤ p− 2

2(p− 1)2
(n+ 2) + 2.

We will deal with the complications this replacement incurs at the end of the proof. By
proposition 6.3.10 the torsion bound B(n, s) is 1 after such a replacement so again we may
appeal to Proposition 6.3.15.

Since the image of τ1+Apx maps to zero in Lm(1,0) S it lifts to the fiber Fm(1,0) S. Here
we may use Proposition 6.3.16 to conclude that the lift of τ1+Apx is zero as long as

s− 1−Ap > v(2)n+ 1 + 4v(2).

Unwinding the replacement of x by a τ -power of x made above we learn that this
argument is valid when(

p− 2

2(p− 1)2
(n+ 2) + 1

)
− 1−Ap > v(2)n+ 1 + 4v(2)

Simplifying and replacing the factor in front of (n + 2) with a possibly smaller one it will
suffice to check that v(2)n ≥ Ap + 2 + 4v(2) when n ≥ (2p− 2)pAp+1− 2 which is clear. �

6.3.5. The κ̄-local category.

6.3.6. Consequences for the sphere.

6.4. Computations in localizations of the Adams–Novikov spectral sequence

6.5. F2-synthetic stable stems through 50

6.6. BP-synthetic stable stems through 50
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